Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser
نویسندگان
چکیده
A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10-9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film.
منابع مشابه
WS2 mode-locked ultrafast fiber laser
Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damag...
متن کامل科学网博客-[转载]Graphene and Lasers Become Ultrafast Friends
Ultrafast laser sources have garnered considerable attention for their many potential applications, ranging from meteorology to telecommunications, medicine, and materials processing. Most of these lasers employ a mode-locking technique in which a nonlinear optical element, called a saturable absorber,turns the laser's continuous wave output into a train of ultrashort optical pulses. Currently,...
متن کاملErbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets
Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.5...
متن کاملPassive Mode Lockmg of a Neodymium-Doped Fiber Laser with a Nonlinear Optical Loop Mirror
ONLINEAR fiber loop mirrors such as nonlinear optical N loop mirrors (NOLM) [1]-[3] and nonlinear amplifying loop mirrors (NALM) [3], [4] have been shown to have a great potential for fast optical switching for signal processing and all-optical communications [5], [6]. Recently, they have been used as a fast saturable absorber to passively mode lock fiber lasers. Generation and reshaping of pic...
متن کامل152 fs nanotube-mode-locked thulium-doped all-fiber laser
Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps(2), and delivers 152 fs pulses with 52.8 ...
متن کامل